Dynamic Thread Coarsening for CPU and GPU OpenMP Code

Ivan R. Ivanov
Institute of Science Tokyo
Tokyo, Japan
RIKEN Center for Computational Science
Kobe, Japan
ivanov.i.e641@m.isct.ac.jp

Toshio Endo
Institute of Science Tokyo
Tokyo, Japan
endo@screc.iir.isct.ac.jp

Abstract

Thread coarsening is a well known optimization technique for GPUs.
It enables instruction-level parallelism, reduces redundant compu-
tation, and can provide better memory access patterns. However,
the presence of divergent control flow - cases where uniformity
of branch conditions among threads cannot be proven at compile
time - diminishes its effectiveness. In this work, we implement
multi-level thread coarsening for CPU and GPU OpenMP code,
by implementing a generic thread coarsening transformation on
LLVM IR. We introduce dynamic convergence - a new technique
that generates both coarsened and non-coarsened versions of di-
vergent regions in the code and allows for the uniformity check to
happen at runtime instead of compile time. We performed evalution
on HecBench for GPU and LULESH for CPU. We found that best
case speedup without dynamic convergence was 4.6% for GPUs
and 2.9% for CPUs, while our approach achieved 7.5% for GPUs and
4.3% for CPUs.

ACM Reference Format:

Ivan R. Ivanov, Jens Domke, Toshio Endo, and Johannes Doerfert. 2025.
Dynamic Thread Coarsening for CPU and GPU OpenMP Code. In Workshops
of the International Conference for High Performance Computing, Networking,
Storage and Analysis (SC Workshops °25), November 16-21, 2025, St Louis, MO,
USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3731599.
3767482

1 Introduction

Modern high-performance computing increasingly relies on hetero-
geneous systems, however, there are still large CPU-only systems
in use such as Fugaku [1].

OpenMP has evolved from being a programming model purely
for CPU multithreading, to also offer unified support for GPU of-
floading. It is the choice of programming model for many applica-
tions being run on supercomputing systems.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only. Request permissions from owner/author(s).

SC Workshops °25, St Louis, MO, USA

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1871-7/25/11

https://doi.org/10.1145/3731599.3767482

Jens Domke
RIKEN Center for Computational Science
Kobe, Japan
jens.domke@riken.jp

Johannes Doerfert
Lawrence Livermore National Laboratory
Livermore, California, USA
doerfertl@llnl.gov

OpenMP provides many directives to help programmers optimize
their code. For example, automatic vectorization, loop unrolling,
tiling, fusion, interchange, etc. Some of these types of transforma-
tions are extremely tedious to implement manually and severely
decrease the maintainability of the code if they are applied manu-
ally.

One such example, and one which OpenMP does not provide, is
thread coarsening. Thread coarsening merges the work of multiple
threads into one while interleaving their instructions. This allows
interleaving of inherently independent sequences of instructions,
which can better exploit instruction level parallelism and can reduce
redundant computation.

It is a well established optimization for GPUs, and similar opti-
mizations also exist for CPUs, such as unroll-and-jam and chunking
in OpenMP. While existing automated approaches for thread coars-
ening exist, to the best of our knowledge, none is available for
OpenMP. In addition all existing implementations suffer from the
inability to handle divergent code. When the branching behavior
of the parallel region does not match between different threads,
code cannot be safely interleaved as original threads must be able
to branch independently. This prevents profitable coarsening when
compiler thread uniformity analysis was not strong enough, or
some behavior of the code or input data was not available to the
compiler.

In this work, we enable thread coarsening for OpenMP for both
CPU and GPU C/C++ code. We apply it to both the omp teams
distribute and omp parallel for constructs via a transforma-
tion on LLVM IR in the clang compiler. To address earlier work’s
limitations with potential thread divergence, we introduce dynamic
convergence - a strategy to allow for generating a coarsened version
of code behind potentially divergent branches that can be used
if the runtime uniformity conditions allow for it. This approach
allows us to coarsen codes that traditional approaches would have
conservatively disabled coarsening for.

This work makes the following contributions.

e A generic thread coarsening transformation on LLVM IR
for both CPUs and GPUs that supports multi-level OpenMP
parallelism (teams and parallel).

e The introduction of dynamic convergence - a technique to
enable thread coarsening for potentially divergent code using
runtime uniformity checks.

https://orcid.org/0000-0003-0356-3768
https://orcid.org/0000-0002-5343-414X
https://orcid.org/0000-0001-7297-6211
https://orcid.org/0000-0001-7870-8963
https://doi.org/10.1145/3731599.3767482
https://doi.org/10.1145/3731599.3767482
https://doi.org/10.1145/3731599.3767482

SC Workshops ’25, November 16-21, 2025, St Louis, MO, USA

parallel (i = 0 to 8) {

1
1 parallel (i = 0 to 16) { 2 A(L * 2);
2 A(L); 3 A * 2+ 1);
3 B(i); 4 B(i * 2);
4 5 B(i*x 2+ 1);
Original [
Coarsened

Figure 1: Thread coarsening of a parallel loop with a factor of
2. It is achieved by partially unrolling the loop and interleav-
ing operations from different original "iterations" (shown in
different colors).

e OpenMP extension clauses in clang to enable easy use of the
transformation in source code.

The paper is structured as follows. We will first introduce the
reader to the thread coarsening transformation in Section 2 along
with its drawbacks. We will describe our improvements to it in
Section 3, before detailing how we apply it to OpenMP in Section 4.
We will finally evaluate our improvements in Section 5 on both
CPU and GPU.

2 Thread Coarsening Background

Thread coarsening is an optimization that was first introduced
for GPUs [12]. The first publications explored the optimization
using manual source code rewriting. Since then, many compiler
approaches have appeared to perform the transformation automat-
ically or to decide on the factor automatically. It has been applied
to OpenACC[7, 8], OpenCL[2], and CUDA[4].

Thread coarsening combines the work of multiple parallel itera-
tions of a loop in a single iteration while interleaving instructions
to exploit instruction level parallelism and reduce redundant com-
putation.

We will use C-like pseudocode to illustrate the transformation.
Fig. 1 shows a very simple example. On the left is the original code
before the transformation. parallel indicates a parallel loop which
indicates that the iterations of the loop can be executed in any
order and in parallel. In this example, we coarsen with a factor of 2.
This means that we consolidate two original iterations in one new
one. As we can see on the right of Fig. 1, the number of iterations
changed from 16 to 8 to account for that, and each new iteration
does the work of two original ones (two A and two B calls). Also, we
are allowed to freely interleave the code from different iterations
(as long as A, B from the same original iteration still appear in the
same order).

The number of original iterations we consolidate is called the
coarsening factor.

2.1 Divergent Control Flow Limitations of
Thread Coarsening

One shortcoming of the thread coarsening optimization is that
it cannot handle cases where the code contains divergent control
flow.

We will use Fig. 2 to illustrate the issue. This example contains a
parallel loop which we want to coarsen, and a conditional branch
if (test(i).Suppose that test(i) evaluates differently for itera-
tions we try to interleave. A branch whose condition may evaluate
differently is called a divergent branch, and one which evaluates the

Ivan R. Ivanov, Jens Domke, Toshio Endo, and Johannes Doerfert

for (int i = 0 to 16) {

1
2 A(1);
3 if (test(i)) {
4 B(i);
5 C(1);
6
7
(a) Original code
1 parallel (i = 0 to 8) {
1 parallel (i =0 to 8) { 2 AL * 2);
2 AL * 2); 3 A(L * 2 + 1);
3 A(d *x 2 + 1); 4 if (test(i * 2)) {
4 if (test(i * 2)) { 5 B(i * 2);
5 B(i * 2); 6 C(i * 2);
6 B(i* 2+ 1); 7 }
7 C@ * 2); . if (test(i * 2 + 1)) {
8 C(i *2+1); 9 B(i * 2+ 1);
9 } 10 CA *x 2+ 1);
0} 11 }

(b) If we can prove test(i) is uniform 12 }
(c) If we must assume test(i) is divergent

Figure 2: We may not be able to interleave everything as the if
(test(i)) branch may evaluate differently depending on the
original iteration number i. The inability to interleave B and
C is a problem shared by all existing automatic coarsening
techniques to the best of our knowledge.

same is called uniform. Then, if we try to interleave B and C in one
basic block as in Fig. 2 (b) !, we would either execute B and C for an
original iteration when they should not have been if we take the
true branch, or miss executing B and C for the other iteration if we
take the false branch. Thus, in this case, we cannot interleave the
contents of the if statement and must evaluate the condition and
branch off differently for each original iteration. This is achieved by
considering the entire if statement as a single unit for the purpose
of interleaving. In this case, the code after the transformation looks
like Fig. 2 (c).

In the case we cannot prove that test (i) will evaluate the same
for interleaved iterations, we must conservatively generate the
same code for the divergent case (Fig. 2 (c)) as that results in correct
behaviour for both divergent and uniform branches.

It is often the case that the important computation that would
benefit from vectorization or coarsening is nested in control flow,
and any potential divergence there would prevent coarsening.

The inability to interleave B and C is a problem shared by all
existing automatic coarsening techniques to the best of our knowl-
edge.

3 Our Approach

We implement coarsening as a loop transformation in LLVM IR and
use it for CPU and GPU OpenMP code. We introduce a dynamic
convergence notion to alleviate the limitations of thread coarsening
for code with potentially divergent control flow.

3.1 Coarsening with Dynamic Convergence

To alleviate the issue with the inability to handle divergent code (see
Section 2.1), we introduce a new approach. In short, we generate
both an optimistic interleaved and a pessimistic non-interleaved

! A basic block is a sequence of instructions which does not have any branches and
will thus execute all instrutions contained.

Dynamic Thread Coarsening for CPU and GPU OpenMP Code

SC Workshops 25, November 16-21, 2025, St Louis, MO, USA

br ...

!

%g1
br ...

!

G()

Before After
Coarsened
bbl:
%cond® = A()
%scondl = A()
%cond = A()
- conv_entry: div_entry:
br %cond, %bb2, %bb3 br %cond®, %bb2, %bb3 br %cond?, %bb2, %bb3
bb2: bb3: bb2: bb3: div_bb2: div_bb3:
%b = B() %d = D() %b® = B() %d0 = D() %b = B() %d = D()
%bl = B() %dl = D()
%sc = C() %e = E() %cO = C() %e0 = E() %c = C() %e = E(
%scl = C() %el = E()
br br ... br .. br .. br ... br ...
bb4: bb4: div_bb4:
br ... br ... Divergent br
Region
Divergent
Region
bba.: bb5: div_exit:
%f = F() %f0 = F() br ..
%fl = F() e
%9 = G() %g0 = G()

Figure 3: Coarsening code in a loop body with control flow with statically unknown uniformity. Both coarsened and fallback
non-coarsened version are generated and which to execute is chosen at runtime.

version for code after potentially divergent control flow. Then, at
runtime we can choose to use the interleaved version if the all
combined iterations agree on the condition. Otherwise, we fall back
to the non-interleaved version. We call this dynamic convergence.
A similar technique has previously been explored in the context of
vectorization [9]. The overview of our LLVM IR transformation is
shown in Fig. 3.

We are now going to detail how our transformation algorithm
works.

3.1.1 lteration Space Partitioning. First, we find the canonical in-
duction variable of the loop. This is the induction variable that is
incremented by a loop invariant increment until it the loop exit
condition defined by a comparison of the upper bound to it is met.
This allows us to compute the total number of iterations the loop
will go through. This, in general, is only known at runtime. Let us
denote the number of iterations with N and the coarsening factor
with f.

We then partition the original loop iteration space in groups of f.
The number of iterations of the new coarsened loop will be |[N/f],
and it will handle the original iterations i where 0 < i < f X |N/f]
For the remaining iterations N mod f, we generate an epilogue
loop which is a clone of the original one.

Now, we need to generate the contents of the coarsened loop,
where we need to do the work of f original iterations per new
iteration.

3.1.2 Coarsened Loop Execution State. There are two states which
the execution of an iteration in the coarsened loop can be in - we
are either in a converged or diverged state. The converged state is
when the original iterations agree on which basic block they are

executing, and can thus execute a coarsened basic block (see the
left Coarsened side of the After state in Fig. 3). The diverged state
is when a previous branch condition differed between the set of
original iterations, and they must now execute non-coarsened basic
blocks independently. (see the right Fallback side of the After state
in Fig. 3).

When we start executing an iteration in the coarsened loop,
because of the way we partitioned the iteration space to go in
groups of f, all original iterations start executing the same loop
entry block, which means we start in a converged state. This means
that we can always use a coarsened block for the entry block to the
coarsened loop (see bb1 in Fig. 3) .

After a uniform branch we can continue executing coarsened
code, however, after encountering a divergent branch we need to
let the original iterations branch independently and start executing
a non-coarsened version of the loop. It would not be incorrect to
continue executing the original iterations independently until they
finish their own body loop, however, there is a question of whether
it is possible to make them re-converge and start executing the
coarsened version again.

To address this issue, we introduce the concept of divergent
regions.

3.1.3 Divergent Regions. We first generate the optimistic loop
structure which contains only coarsened basic blocks (the Coars-
ened side of the After state in Fig. 3) - this assumes all branches are
uniform. Now we need to insert the runtime checks for divergence.

Our algorithm first analyzes all branches b € B in the body
of the loop and groups them in two. The first group is the prov-
ably uniform branches By, which will evaluate the same for all

SC Workshops ’25, November 16-21, 2025, St Louis, MO, USA

#pragma omp teams distribute

1

2 for (int i = 0; i < n; i++) {

3 #pragma omp parallel for

4 for (int j = 0; j < m; j++) {
5 CODE(i, j);

6 }

7}

Figure 4: OpenMP provides two levels of parallelism which
can be used to execute loops in parallel. Our transformation
is able to coarsen both of these levels.

iterations of the loop. The second group is the (potentially) diver-
gent branches Bp which we may or may not evaluate the same for
different original iterations.

The uniform branches in By do not need any special handling
as when in a converged state, the original iterations agree on the
next block and can continue executing the coarsened loop in a
converged state. For each branch in Bp, we insert a runtime check
which tells us whether the original iterations agreed on the branch
condition (%x = eq cond@ cond1 in Fig. 3). If they do, they remain
in the converged state and continue executing the coarsened code.
If they do not, they need to diverge and execute independently. We
call the region of the code they must execute independently the
divergent region of the branch. Each branch b € Bp has its own
divergent region which we will note as DR(b).

To determine where the independently executing original iter-
ations will converge again we use post-dominator tree analysis
in LLVM. This gives us information about what is the "earliest"
basic block guaranteed to be executed after a given basic block. Le.
this analysis gives us the earliest point at which the original itera-
tions (which started executing independently after encountering a
runtime divergent branch branch in Bp) will meet again and can
start executing in a converged state. Thus, the the divergent region
of branch b - DR(b) is the set of blocks reachable from the basic
block that b is in, without passing through the post-dominator of b
- PD(b).2

This gives us a guarantee when we execute the original iterations
independently, they will all arrive at PD(b) once they exit DR(b).
This means, that at that point, we can re-converge them and start
executing in a convergent state again. This allows us to recover in
the middle of the iteration and not give up after the first divergence.

This is illustrated in Fig. 3. The identified divergent region is
highlighted in yellow on the left side. This then gets transformed
into a fallback region which gets executed sequentially by the
original iterations, entering through div_entry, and re-converging
at bb5, which is the post-dominator of bb1. While the execution
state can change into divergent mode at any branch b in Bp, after
that it needs to execute the entirety of the associated DR(b) until it
re-converges.

2The existence of a post-dominator in the loop body itself is given to us by the fact
that we work on loops in a canonical form which are guaranteed to have a single loop
latch block which will either exit the loop, or start another iteration. Thus, all loop
iterations finish execution at the latch block, which means that the latch block always
post-dominates all other blocks in the loop.

Ivan R. Ivanov, Jens Domke, Toshio Endo, and Johannes Doerfert

3.2 Characteristics of Coarsening with Dynamic
Convergence

An important characteristic of dynamic convergence is that the
performance can be very input-dependent.

While generally coarsening with a higher factor (for example
to fully utilize the vector-width of a CPU) can be more beneficial
in the optimal case where all divergent branches turn out to be
runtime-uniform, it can have adverse effects due to the code size
and complexity increase. In addition, under an assumption of ran-
dom distributions of the branch condition results, it is increasingly
unlikely to find a sequence of f matching conditions (making the
branch runtime-uniform) as the factor f grows.

An important advantage to traditional coarsening is that it can
enable vectorization in parallel loops with long bodies that are
guarded by a potentially divergent conditional which prevents
coarsening,.

Drawbacks. Dynamic convergence can also have some draw-
backs.

One of the biggest drawbacks is the explosion in code size it
can result in. Traditional thread coarsening results in roughly a
(f+1)X code size increase, where f is the factor. This comes from
the fact that the coarsened version of the loop will contain roughly
[more instructions, however, generally, we also need to generate
an epilogue loop to iterate through the remaining iterations which
were not divisible by the factor. When dynamic convergence is
enabled, fallback code for each divergent region needs to be intro-
duced. These divergent regions can be nested in each other which
results in more code duplication.

Another drawback is the increased computational overhead for
the uniformity checks and the additional frequent branching.

Profitable cases. We expect that there are some cases where the
profitability of dynamic convergence is apparent and heuristics can
be implemented to detect them and selectively enable them. For
example, if there is a large amount of uniform code (straight-line
or with uniform branch conditions) that is hidden behind a single
potentially divergent branch, the benefit we can get from coarsen-
ing that region can greatly outweigh the overhead of introducing
some additional comparisons and branching. Further, for CPUs, if
interleaving of code hidden behind a divergent branch would en-
able profitable vectorization, it is even more likely to be profitable.
We leave exploration in this space to future work.

4 OpenMP Thread Coarsening

First, we will go through how the parallel OpenMP constructs are
implemented in clang, before detailing how we apply our transfor-
mation.

4.1 Background to Parallel Constructs in
OpenMP

OpenMP contains constructs for both task and structured loop
parallelism. In this work we are specifically going to look into the
structured loop parallelism constructs since that is where thread
coarsening can be easily applied.

For loop parallelism, OpenMP provides two levels of parallelism -
teams and threads, where teams are composed of threads. Teams are

Dynamic Thread Coarsening for CPU and GPU OpenMP Code

parallel (teamId = @ to teamNum) {
parallel (threadId = 0@ to threadNum) {

SC Workshops 25, November 16-21, 2025, St Louis, MO, USA

1

2

3 // The code at this level becomes the outlined device kernel code for GPUs.
4 for (int i : range(teamId * itemsPerTeam, (teamId + 1) % itemsPerTeam)) {
5 for (int j : range(threadld * itemsPerThread, (threadId + 1) * itemsPerThread)) {
6 // Optional chunk loop can get introduced here

7 CODE(i, 3);

8 3

9 3

10 }

11 }

Figure 5: By default, OpenMP distributes the work of the loops to be processed by the parallel workers of each level in equal
portions. In our work, we leave the thread launch configuration (number of teams and threads) the same, and coarsen the two

inner distribution for loops.

#pragma omp teams distribute ompx_coarsen_distribute(3)

1

2 for (int i = 0; i < n; i++) {

3 #pragma omp parallel for ompx_coarsen_for(2)
4 for (int i = 0; i < n; i++) {

5

6 3

7}

Figure 6: The user can easily annotate the OpenMP loop they
want to coarsen. Because we support dynamic coarsening
we can coarsen both the teams distribute and parallel for
loops. This roughly corresponds to "block" and "thread" coars-
ening explored in earlier work. [4, 10, 11]

launched by the omp teams directive, while threads are launched
by the omp parallel directive. These two levels of parallelism
can be used to execute the iterations of for loops in parallel using
the omp distribute and omp for respectively. The launch of the
parallelism and the parallel execution of the loops using the just
launched parallel resources can be combined in one directive - omp
teams distribute and omp parallel for respectively as shown
in Fig. 4.

In the default static scheduling scheme, the compiler then de-
composes these loops so that each team and thread gets an equal
amount of work (unless the number of work items is not divisible
by the number of workers, when some workers get fewer). This
scheduling is shown in Fig. 5. On GPUs these two levels of paral-
lelism get mapped to the blocks (workgroups) and threads, while
on CPUs the behavior usually depends on compiler and runtime
options, however, OpenMP code written for CPUs usually only uses
the omp parallel level.

These outer two parallel loops are implicit in the IR. They do
not materialized, and are instead handled by the OpenMP runtime.
The region nested in the two parallel loops get materialized in the
IR and can be optimized as normal.

4.2 Applying our Transformation to OpenMP in
Clang

We apply our coarsening transformation to the two inner for loops
in the decomposed loop nest in Fig. 5. We assume that the program-
mer does not use any knowledge about how the scheduling is done
internally and thus parallel execution of the individual CODE (i, j)
in the inner two loops is allowed. This way, we do not need to alter
the thread launch configuration (number of teams and threads).

OpenMP also provides a chunked schedule, which introduces
one more loop at the innermost level. In that case, since the OpenMP
standard guarantees execution of the items in the chunk in order,
we do not coarsen the chunk loop.

Multi-level coarsening. As stated above, we enable coarsening
of multiple levels of parallelism, which is not a very well explored
domain. Block level coarsening (coarsening the outer level of paral-
lelism) was first proposed by Unkule et al.[11] and later indepen-
dently evaluated by Stawinoga and Field [10]. Earlier work explored
combining both levels of coarsening [4] and showed that there are
cases where coarsening both parallel dimensions achieved the best
performance. We also bring the benefits of this to OpenMP.

4.3 Multi-level OpenMP Coarsening Extension
in Clang

Since we do not have an automated approach to deciding the ap-
propriate coarsening factor, we provide the programmer with easy
to use OpenMP clauses which can be specified at the omp teams
distribute and omp parallel for directives - ompx_coarsen_
distribute(f) and ompx_coarsen_for(f) respectively, where f
is the coarsening factor. Their usage is illustrated in Fig. 6. Cur-
rently dynamic convergence can only be toggled using a compiler
command line option or an environmental variable, however, in the
future, it can be added as an additional parameter to the clauses.

5 Evaluation

We evaluate our approach on both CPU and GPU OpenMP offload-
ing C/C++ codes. Since our aim is to provide programmers with
easy to use transformations which can be specified in source code,
we gather measurements for a suite of different configurations of
our transformation.

In general we have two parameters which can vary for coarsen-
ing a given parallel loop - the coarsening factor (see Section 2) and
whether we use dynamic convergence (see Section 3.1).

5.1 GPU

Benchmarks. For our evaluation on GPUs, we used the HeCBench [5]

benchmarking suite. It contains 314 benchmarks for OpenMP of-
floading, we obtained measurements for roughly 350 kernels.

Systems. We use two systems to evaluate our approach on GPUs.
Our first GPU system has an AMD MI60 GPU, and the second one
an AMD MI210. These GPUs were released in 2018 and 2022 and

SC Workshops ’25, November 16-21, 2025, St Louis, MO, USA

Ivan R. Ivanov, Jens Domke, Toshio Endo, and Johannes Doerfert

AMD MI60
3
Best configuration with or without dynamic convergence (our approach) =
X Best configuration without dynamic convergence (prior approach)
—— No coarsening (baseline)
2.5 1
Q.
>
el
o
& 21 5
(]
2
©
T))X
© 1.5
=2 b
- o™ .
XX %
e X MX>2<>&<>$<
Kernels with speedup > 2% (176 out of 348)
AMD MI210
3 o)
O Best configuration with or without dynamic convergence (our approach)
X Best configuration without dynamic convergence (prior approach)
—— No coarsening (baseline)
2.5 1 o)
3
®

Relative speedup
N

Kernels with speedup > 2% (168 out of 349)

Figure 7: Autotuned best performing coarsening configuration of HeCBench OpenMP kernels on AMD MI60 and AMD MI210
GPUs. In many cases dynamic convergence was required to reach the best performance.

we hope this can show how our approach offers improvements for
a wide range of GPUs.

Coarsening Configurations. Typical OpenMP GPU offloading code
makes use of both the teams and parallel levels of parallelism
(see Section 4.1). Therefore, we need to evaluate coarsening both
levels and how the coarsening factors of both levels may interact.
We have two levels of loops which can both independently have
different factors and have dynamic convergence disabled or enabled
which makes the possible configuration space very large. For this
reason, we limit dynamic convergence to be on or off for both loops
at the same time, and we experimented with factors in {2, 4, 8}. Our
entire configuration matrix is {off, 2, 4, 8} x {off, 2,4, 8} x {on, off},
which are the teams factors, parallel factors, and whether dy-
namic convergence is on or off. The configurations (off, off, %) are

duplicates,? so we use only one of them. This gives us a total of 31
configurations per kernel.

Collecting Runtime Data. The runtime responsible for launching
OpenMP GPU kernels in LLVM has support for generating profiling
data for each kernel launch. We use this feature to obtain the
wall-clock runtime of individual kernel launches and aggregate
the runtimes of the same kernel across three executions of each
benchmark.

Best Configuration Performance. We compared the best-performing
configuration with and without dynamic convergence to the base-
line performance where coarsening is turned off. Then, we took
either the transformed version if the best one outperformed the

3Whether dynamic convergence is on or off has no effect when coarsening is off.
“Enabled by the environmental variable LTBOMPTARGET_PROFILE.

Dynamic Thread Coarsening for CPU and GPU OpenMP Code

SC Workshops 25, November 16-21, 2025, St Louis, MO, USA

ApplyAccelerationBoundaryConditionsForNodes:1159 - 1.03 1.05|0.96 1.03 0.93 /098 1.00|1.04 1.01|1.03 1.04|1.01 1.010.99 1.03
UpdateVolumesForElems:2415 - 1.00 1.02|0.96 0.95|0.93 0.97 [0.98 0.97 |1.00 1.02 | 0.99 0.97 | 0.96 0.99
CalcVolumeForceForElems:1082 - 119 1.05|091 1.06|1.05 1.20 1.08|1.09 1.09|1.06 1.03|1.08 1.13|1.11 1.11 |SBcs8) 1.11
CalcLagrangeElements:1584 . 1.00 0.99|0.93 0.93|0.93 0.91|0.94 0.97|0.99 1.01|0.98 0.96 |0.97 1.00
InitStressTermsForElems:282 -1.02 1.04|114 113|110 1.06 091 0.90|0.91 0.93|0.97 1.17|1.18 1.19 D 1.15|1.18 1.20
CalcVelocityForNodes: 1188 0.98 0.97 | 0.94 0.94|0.94 095|095 0.960.99 0.98|0.97 0.95|0.96 0.91
CalcPositionForNodes:1212 1.01 1.01|0.99 0.97|0.97 0.98|0.99 0.99|1.01 0.98|1.00 0.96|0.98 0.96
ApplyMaterialPropertiesForElems:2339 - 095 1.02|096 1.04|0.96 1.05|1.02 0.96|0.99 1.01|1.00 1.00 1.00 | 0.93 1.02 1.4
CalcMonotonicQGradientsForElems:1618 0.86 0.86|0.69 0.67 | 0.65 0.66 | 0.63 0.62 | 0.61 0.61 | 0.57 0.56 | 0.56 0.58
CalcForceForNodes:1114 -0.73 0.86|0.77 0.86|0.88 0.78|0.83 0.92|0.83 0.85|0.86 0.78|0.86 0.89 | 0.88 0.78
CalcAccelerationForNodes:1143 1.04 | 1.14 Rl -0/ ICIRINRAN 1.02 | 1.14 BEcEE 1.15 0.99 1.13) i) H
CalcKinematicsForElems:1510 -1.01 096|101 099|100 1.01|(0.96 0.93|0.95 0.94|0.96 1.00|1.01]1.021.00 1.01|1.00 1.01
IntegrateStressForElems:565 -0.96 096|098 0.97)|0.98 0.92 (093 092|092 0.87|0.91 0.92|0.96 0.95)0.990.92|0.94 0.90 -1.2 H
CalcFBHourglassForceForElems:969 - 0.95 . 0.95 0.94|095 0.89|0.94 0.88|0.91 0.87|0.87 0.88|0.95 091 |0.92 0.93|0.94 0.89 E
CalcSoundSpeedForElems:2187 -0.99 0.98|0.97 0.97|0.991.02)1.00 0.93|0.95 1.00|0.98 0.97|0.98 1.02 |0.98 0.96 | 0.94 0.99 E
— A S
EvalEOSForElems:2297 -1.00 1.02|096 0.95|1.03]1.05|0.98 0.92|0.94 0.99|0.99 0.97 |0.98 1.01 0.96 | 0.96 0.99 . ;
CalcMonotonicQRegionForElems:1770 - 098 1.00|0.93 0.96|0.99 0.97 092 0.91|0.90 0.95|0.95 0.96 | 0.97 0.99 0.98 | 0.94 1.00 %
o
CalcHydroConstraintForElems:2531 - 1.02 1.04 1.05|1.04 1.00|1.00 1.03|1.03 1.00|1.04 1.04 1.00|0.98 1.04 -1.0 &
CalcCourantConstraintForElems:2462 - 1.02 1.07 W 1.00 0.97|0.98 1.02|1.05 1.00|1.02 1.05|1.06 1.00|0.99 1.03
CalcEnergyForElems:2100 -1.01 1.04|098 1.01|1.02 E 1.00 0.96|0.99 1.00|1.01 1.00 |1.01 1.04 0.99|0.98 1.00
CalcEnergyForElems:2153 -1.01 1.03|0.97 0.99|1.02 E 1.00 0.98|0.95 1.01|0.99 1.00|0.99 1.01 0.96 | 0.95 0.99 [
CalcEnergyForElems:2062 -0.99]1.05)097 0.98|1.03 1.02|0.99 0.96|0.96 0.98|0.98 1.01|1.02 1.04 1.01|0.98 1.02
CalcEnergyForElems:2116 -1.001.04 098 0.98|1.01 1.02(1.00 0.98|0.97 1.00|0.99 0.98|0.99 1.01|1.00 0.98|0.98 0.99 -0.8
CalcEnergyForElems:2075 -1.01)1.03)096 0.97|1.01 1.02(0.96 0.91|0.93 0.97|0.95 0.97|0.99 1.01|1.00 0.99|0.95 0.99
CalcFBHourglassForceForElems:782 -1.00}1.03)099 1.01|1.01 0.99|1.01 0.99|1.00 1.000.99 0.99|1.01 1.00|1.02 1.00|0.99 1.02
IntegrateStressForElems:521 E 0.98 0.98|0.97 099|098 1.00|0.97 0.99 [1.00 0.98 | 0.97 1.00
CalcHourglassControlForElems:1009 - 1.01 099|101 1.00|0.99 1.01|1.00 1.01| 1.02 1.01 1.00|1.01 1.02
EvalEOSForElems:2240 - 1.01 1.03|0.98 0.95|0.95 0.97 [0.96 1.00 | 1.00 1.04 1.01|0.98 1.03
CalcPressureForElems:2029 -0.96]1.04)09 0.99|099 1.03(0.98 0.95|0.94 0.99|0.97 098|099 1.02|1.00 0.99|0.96 1.00
CalcPressureForElems:2022 -1.021.06 | 099 1.00|1.04 1.061.03 097|099 1.02|1.02 1.01|1.03 1.05|1.06 1.01|1.00 1.03
0 5 10 2:0 2-1 3:0 3:1 4:0 4:1 510 5:1 6:0 6:1 7:0 7:1 8:0 8:1 9:0 9:1 16-0 ld-l

Baseline runtime (%)

Configurations (Factor - Dynamic convergence)

Figure 8: Evaluation of our thread coarsening transformation for different configurations (factor - dynamic convergence) on
the kernels in LULESH. We show the speedup of each configuration compared to the baseline (no coarsening) configuration.
The best performing configuration for each kernel (row) is outlined in black.

baseline, or the baseline version. This way, we attempt to summarize
what the effect of this optimization would be if the user picked the
best possible configuration (including the baseline non-transformed
one).

We computed the speedup relative to the baseline, and plotted
the results for each kernel in Fig. 7. Since many benchmarks did
not show a substantial improvement, we limited the plots to only
kernels where we achieved a > 2% speedup. We can observe how in
many cases dynamic convergence was required to obtain the peak
performance, and the gap in performance for many kernels is very
large.

We also calculated the overall geomean effect of the user having
the ability the use dynamic convergence. Without it, when picking
the best possible configuration, we achieved a speedup 4.8% for

MI60 and 4.8% for MI210. When we enable the dynamic coarsen-
ing configurations, the overall speedup grows to 7.5% and 7.8%
respectively.

5.2 CPU

Benchmarks. For our evaluation on CPUs, we used LULESH [6]
with its default invocation, which let us measure 30 OpenMP paral-
lel regions (which we will call kernels).

System. Our CPU system has an EPYC 7713 CPU, with 256GB of
RAM.

Coarsening Configurations. LULESH (as is typical for CPU-only
OpenMP codes) only uses the parallel level in OpenMP (see Sec-
tion 4.1). This means that we only have one choice to make for
the factor we coarsen with for each kernel. We also have a choice

SC Workshops ’25, November 16-21, 2025, St Louis, MO, USA

to turn dynamic convergence on or off. Since the transformation
configuration space is much smaller than the GPU case, we can
experiment with more coarsening factors in this case.

We choose to coarsen with factorsin {i : 2 < i < 10} and with
dynamic convergence on and off for each factor. Together with the
case where coarsening is off, we run the benchmark in 19 total
configurations.

Collecting Runtime Data. To collect runtime data, we measured
the wall-clock time it took for each of the parallel regions to ex-
ecute. For this purpose, we patched LLVM’s OpenMP runtime to
measure CPU parallel regions’ runtimes and dump them to a file for
later analysis. In this case, we ran the benchmark 20 times in each
configuration, and summed up the runtimes of each kernel across
each execution, and took the median across the 20 benchmark runs.

Results. We compute the speedup of each configuration with
regard to the baseline with coarsening turned off and we plot the
results in Fig. 8.

We also computed the overall speedup that can be obtained for
the parallel kernel portions of the entire LULESH application if we
picked the best performing configuration for each kernel separately.
This is achieved by summing up the runtimes for the per-kernel
best-performance configurations and comparing that against the
sum of the runtimes in the baseline configuration. Doing this we
achieved a 2.9% speedup if we do not use any dynamic convergence
configurations and 4.3% with dynamic convergence enabled.

The majority of the best performing configurations used dynamic
convergence, with most of them at coarsening factors 2, 4, and 8.

6 Future Outlook

In the future, we would like to explore strategies for automatic
coarsening factor decision. Input generation [3] can be used to
train models to predict optimal factors. However, as previously
discussed in Section 3.2 the effects of dynamic convergence can
be very input-dependent, thus integrating a solution for recording
and replaying kernels for fast autotuning can make the use of this
transformation easier and more effective.

We believe that thread coarsening with dynamic convergence has
the potential to greatly benefit from profile-guided optimizations.
Profiling can be used to check in advance how often divergent
branches are actually uniform for a given factor. There are two
possible optimizations that can make use of this information.

Firstly, in cases where it is rare that a branch is uniform, we
can skip generating the optimistic coarsened version and only gen-
erate the fallback loop where each original iteration’s divergent
region executes sequentially. This can alleviate the code size issue
of dynamic convergence (see Section 3.2)

Secondly, when the runtime divergence of a branch is exceed-
ingly rare, while we cannot skip generating the fallback version, as
it would be illegal (see Section 2), we can make use of code layout
optimizations which make sure the very rarely executed code will
not take up instruction cache space which can be used for hot code.

Ivan R. Ivanov, Jens Domke, Toshio Endo, and Johannes Doerfert

7 Conclusion

We implemented a general thread coarsening transformation on
LLVM IR. We give programmers the ability to apply thread coarsen-
ing on OpenMP teams distribute and parallel for constructs
using new extension clauses in clang. To overcome a limitation ex-
isting thread coarsening implementations share - inability to handle
divergent control flow - we introduced dynamic convergence, which
can at runtime choose a coarsened version of the code subject to a
uniformity check.

Our evaluation on AMD MI60 and MI210 GPUs and on an AMD
EPYC 7713 CPU, showed how dynamic convergence allowed us
to achieve aggregated speedups of 4.3% on CPU and 7.5% on GPU
compared to 2.9% and 4.6% without, respectively.

Acknowledgments

This work was supported by JST SPRING, Japan Grant Number
JPMJSP2180 and the RIKEN Junior Research Associate Program.

This work was performed under the auspices of the U.S. De-
partment of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344 (LLNL-CONF-2010264). This
manuscript has been partially co-authored by Lawrence Livermore
National Security, LLC under Contract No. DE-AC52-07NA27344
with the U.S. Department of Energy. The United States Government
retains, and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a non-
exclusive, paid-up, irrevocable, world-wide license to publish or
reproduce the published form of this manuscript, or allow others
to do so, for United States Government purposes.

ChatGPT was utilized to help draft the abstract, introduction,
and conclusion sections of the paper.

References

[1] [n.d.]. TOP500. https://www.top500.org/
[2] Prithayan Barua, Jun Shirako, and Vivek Sarkar. 2018. Cost-Driven Thread
Coarsening for GPU Kernels. In Proceedings of the 27th International Conference
on Parallel Architectures and Compilation Techniques (Limassol, Cyprus) (PACT
’18). Association for Computing Machinery, New York, NY, USA, Article 32,
14 pages. doi:10.1145/3243176.3243196
Ivan R. Ivanov, Joachim Meyer, Aiden Grossman, William S. Moses, and Johannes
Doerfert. 2024. Input-Gen: Guided Generation of Stateful Inputs for Testing,
Tuning, and Training. arXiv:2406.08843 [cs.SE] https://arxiv.org/abs/2406.08843
[4] Ivan R. Ivanov, Oleksandr Zinenko, Jens Domke, Toshio Endo, and William S.
Moses. 2024. Retargeting and Respecializing GPU Workloads for Performance
Portability. In 2024 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). 119-132. doi:10.1109/CG0O57630.2024.10444828
[5] Zheming Jin and Jeffrey S. Vetter. 2023. A Benchmark Suite for Improving Per-
formance Portability of the SYCL Programming Model. In 2023 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). 325-327.
doi:10.1109/ISPASS57527.2023.00041
[6] Ian Karlin, Abhinav Bhatele, Jeff Keasler, Bradford L. Chamberlain, Jonathan
Cohen, Zachary DeVito, Riyaz Haque, Dan Laney, Edward Luke, Felix Wang,
David Richards, Martin Schulz, and Charles Still. 2013. Exploring Traditional
and Emerging Parallel Programming Models using a Proxy Application. In 27th
IEEE International Parallel & Distributed Processing Symposium (IEEE IPDPS 2013).
Boston, USA.
Alberto Magni, Christophe Dubach, and Michael O’Boyle. 2014. Automatic
Optimization of Thread-Coarsening for Graphics Processors. In Proceedings of the
23rd International Conference on Parallel Architectures and Compilation (Edmonton,
AB, Canada) (PACT ’14). Association for Computing Machinery, New York, NY,
USA, 455-466. d0i:10.1145/2628071.2628087
Alberto Magni, Christophe Dubach, and Michael F. P. O’Boyle. 2013. A Large-
Scale Cross-Architecture Evaluation of Thread-Coarsening. In Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis (Denver, Colorado) (SC °13). Association for Computing Machinery,
New York, NY, USA, Article 11, 11 pages. doi:10.1145/2503210.2503268

&

7

—
&

https://www.top500.org/
https://doi.org/10.1145/3243176.3243196
https://arxiv.org/abs/2406.08843
https://arxiv.org/abs/2406.08843
https://doi.org/10.1109/CGO57630.2024.10444828
https://doi.org/10.1109/ISPASS57527.2023.00041
https://doi.org/10.1145/2628071.2628087
https://doi.org/10.1145/2503210.2503268

Dynamic Thread Coarsening for CPU and GPU OpenMP Code SC Workshops 25, November 16-21, 2025, St Louis, MO, USA

[9] Jaewook Shin. 2007. Introducing Control Flow into Vectorized Code. In 16th
International Conference on Parallel Architecture and Compilation Techniques
(PACT 2007). 280-291. doi:10.1109/PACT.2007.4336219

[10] Nicolai Stawinoga and Tony Field. 2018. Predictable Thread Coarsening. ACM
Trans. Archit. Code Optim. 15, 2, Article 23 (6 2018), 26 pages. doi:10.1145/3194242
[11] Swapneela Unkule, Christopher Shaltz, and Apan Qasem. 2012. Automatic
Restructuring of GPU Kernels for Exploiting Inter-thread Data Locality. 21-40.
doi:10.1007/978-3-642-28652-0_2
Vasily Volkov. 2016. Understanding Latency Hiding on GPUs. Ph. D. Dissertation.
EECS Department, University of California, Berkeley. http://wwwz2.eecs.berkeley.
edu/Pubs/TechRpts/2016/EECS-2016-143.html

[12

https://doi.org/10.1109/PACT.2007.4336219
https://doi.org/10.1145/3194242
https://doi.org/10.1007/978-3-642-28652-0_2
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-143.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-143.html

	Abstract
	1 Introduction
	2 Thread Coarsening Background
	2.1 Divergent Control Flow Limitations of Thread Coarsening

	3 Our Approach
	3.1 Coarsening with Dynamic Convergence
	3.2 Characteristics of Coarsening with Dynamic Convergence

	4 OpenMP Thread Coarsening
	4.1 Background to Parallel Constructs in OpenMP
	4.2 Applying our Transformation to OpenMP in Clang
	4.3 Multi-level OpenMP Coarsening Extension in Clang

	5 Evaluation
	5.1 GPU
	5.2 CPU

	6 Future Outlook
	7 Conclusion
	Acknowledgments
	References

