
Automatic Parallelization and OpenMP Offloading
of Fortran Array Notation

Ivan R. Ivanov1,2[0000−0003−0356−3768],
Jens Domke2[0000−0002−5343−414X],

Toshio Endo1[0000−0001−7297−6211], and
Johannes Doerfert3[0000−0001−7870−8963]

1 Tokyo Institute of Technology
2 RIKEN Center for Computational Science
3 Lawrence Livermore National Laboratory

Abstract. The Fortran programming language is prevalent in the scien-
tific computing community with a wealth of existing software written in
it. It is still being developed with the latest standard released in 2023.
However, due to its long history, many old code bases are in need of
modernization for new HPC systems. One advantage Fortran has over
C and C++, which are other languages broadly used in scientific com-
puting, is the easy syntax for manipulating entire arrays or subarrays.
However, this feature is underused as there was no way of offloading them
to accelerators and support for parallelization has been unsatisfactory.
The new OpenMP 6.0 standard introduces the workdistribute directive
which enables parallelization and/or offloading automatically by just
annotating the region the programmer wishes to speed up. We implement
workdistribute in the LLVM project’s Fortran compiler, called Flang.
Flang uses MLIR as its intermediate representation which allows for a
structured representation that captures the high level semantics of array
manipulation and OpenMP. This allows us to build an implementation
that performs on par with more verbose manually parallelized OpenMP
code. By offloading linear algebra operations to vendor libraries, we also
enable software developers to easily unlock the full potential of their
hardware without needing to write verbose, vendor-specific source code.

Keywords: OpenMP · Fortran · offloading · parallelization.

1 Introduction

The most substantial compute power found in most modern HPC systems is in
their accelerators, namely GPUs [1]. Thus, it is important to achieve a high GPU
utilization in order to maximize performance of scientific computing applications.

Fortran is still prevalent in the scientific community and there are vast amounts
of important applications written in it. Previous Fortran codes were not written
with accelerators in mind, so enabling scientists to easily make use of modern
hardware with minimal effort is an important goal.

2 Ivan R. Ivanov et al.

OpenMP has been widely used as a way to accelerate these programs, and the
OpenMP 6.0 Specification [2]—scheduled to be released in late 2024—introduces
a new directive with this goal in mind, called workdistribute.

In this work, we present a proof-of-concept implementation of workdistribute
in LLVM’s MLIR-based Flang compiler, and show how code, which utilises array
notation, can be automatically parallelized and offloaded to accelerators, with
just simple annotations by the programmer. We will introduce the Flang compiler
and the MLIR infrastructure it is built upon in Section 2. Then, we will present
our approach in Section 4 and evaluate it in Section 5.

2 Background

In this section, we will outline some Fortran features which pertain to this work
before introducing the new workdistribute OpenMP 6.0 directive. We will also
briefly describe the LLVM project’s MLIR compiler infrastructure and Fortran
compiler Flang.

2.1 Array Notation in Fortran

Array notation provides easy syntax for the programmer to interact with
multi-dimensional arrays in a concise and intuitive fashion, as shown in Fig. 1 (a).
With the new workdistribute construct, parallelization and offloading of such
array notation requires only minimal source changes, as illustrated in Fig. 1 (b).
Programmers can also use the slicing notation (e.g., y(1:n/2,1:n)) to specify
specific portions of the arrays to be operated on.

An intricacy of this feature is that the expression on the right-hand side
(RHS) of assignments must be evaluated before being assigned to the left-hand
side (LHS). An example of why this is required is shown in Fig. 2 where an array
notation implementation of array reversal is shown in Fig. 2c. If the result of
the RHS is computed element-wise and stored directly in the LHS as shown in
Fig. 2b, some of the element-wise computation will not use the original values in

integer :: n
logical :: any_less
real, dimension(n, n) :: x, y, tmp

y(1:n/2,1:n) = 1.0
y = y + x
tmp = n * matmul(x, y + 1.0)
any_less = any(tmp(1:n/2,1:n/3) < 1.0)

(a) Fortran array notation

integer :: n
logical :: any_less
real, dimension(n, n) :: x, y, tmp
!$omp target teams workdistribute

y(1:n/2,1:n) = 1.0
y = y + x
tmp = n * matmul(x, y + 1.0)
any_less = any(tmp(1:n/2,1:n/3) < 1.0)

!$omp end target teams workdistribute

(b) OpenMP workdistribute

Fig. 1: (a) Fortan array notation allows operating on entire arrays or slices of
arrays (discussion in Section 2.1) and (b) OpenMP workdistribute directive
instructs the compiler to automatically parallelize the computation and optionally
offload it to a target device (further discussed in Section 2.2)

Automatic Parallelization and OpenMP Offloading of Fortran 3

integer :: n
real, dimension(n) :: x

x = x(n:1)

(a) Array reversal (original code)

integer :: i, n
real, dimension(n) :: x

do i = 1, n
x(i) = x(n + 1 - i)

enddo

(b) Incorrect compiler-generated code

integer :: n
real, dimension(n) :: x, tmp

do i = 1, n
tmp(i) = x(n + 1 - i)

enddo
do i = 1, n

x(i) = tmp(i)
enddo

(c) Correct compiler-generated code

Fig. 2: Using array notation in Fortran may require additional implicit allocations
as storing the result of the RHS directly in the LHS when they alias would
overwrite other elements that may be used later in the same array operation.

x, but values overwritten earlier by the same array operation. Thus, correctly
generated code for Fig. 2a is shown in Fig. 2c, where we allocate a temporary
array for the RHS expression before assigning it to the LHS.

In general, in order to preserve correctness, the compiler must allocate inter-
mediate temporary arrays for all expressions that appear in the RHS. For best
performance, optimizations then try to eliminate temporaries when they are not
required for correctness.

2.2 The OpenMP workdistribute directive

An example of the workdistribute directive is shown in Fig. 1 (b). This directive
must be nested directly in a teams directive which can in turn be nested in a
target directive. The target directive specifies that the code can be run on
a target device, while the teams directive indicates that a league of teams will
be launched and they will work in parallel. The teams directive corresponds to
the outermost level of parallelism in OpenMP.The workdistribute directive
specifies that all teams share the work contained in it, while preserving the
semantics of the Fortran code. This means that, for example, the ordering of
statements is enforced and the RHS of assignments must be completed prior to
the assignment to the LHS, as we discussed in Section 2.1.

Statements allowed inside the workdistribute region are array assignments,
calls to array elemental operations (e.g. element-wise multiplication, math func-
tions), calls to intrinsic functions operating on arrays (e.g. matmul, transpose,
any, etc.), scalar operations and assignments. This means that this construct is
a single block without control flow [2].

Each array element in an elemental-wise computation and assignment is a
unit of work, as is each individual scalar operation. Parallelization is performed
across units of work and compilers are at liberty to choose how intrinsics are
implemented.

4 Ivan R. Ivanov et al.

2.3 Multi-Level Intermediate Representation (MLIR)

A sub-project of the LLVM project, MLIR [3] is a compiler development framework
that enables a structured intermediate representation that is easily composable
and extensible. It allows abstractions on different levels to be freely mixed
and contained in a single representation. The basic building blocks of MLIR
are operations and structure in MLIR is represented through region-carrying
operations. For example, an if statement can be represented as an operation
that takes a condition as an operand and contains two regions, then and else,
one of which is executed according to the condition value at runtime. A group of
operations and types that pertain to a specific purpose is called a dialect.

2.4 The Flang Compiler

Flang [4] is LLVM’s Fortran compiler and it uses MLIR for its intermediate
representation. This allows it to use a progressive lowering pipeline which starts
at an abstract high level representation that captures the Fortran semantics and
then progressively lowers that to a more concrete compute-oriented representation
in LLVM IR.

Flang’s optimization pipeline is generally comprised of three stages which
are illustrated in Fig. 3. They roughly correspond to the dialects used at the
respective stages. At the beginning, the hlfir (High-Level Fortran IR) dialect is
used in conjunction with fir (Fortran IR) and omp (OpenMP) dialects to express
a high-level abstract representation of the program.4

@
Fortran

Ð @MLIR

hlfir
fir
omp

@MLIR

fir
omp

@LLVM

llvm
@>
Binary

@ó
Fortran
runtime

@ó

Fortran
OpenMP
runtime

Flang
Frontend

Flang
Lowering

Flang Opt.

Flang
Lowering

Flang Opt.

LLVM Backend
Linker

LLVM Opt.

Fig. 3: Flang employs a gradual lowering strategy to preserve high-level Fortran
semantics (in the hlfir dialect) before lowering to the fir dialect and finally
LLVM IR. Optimizations suitable for the representation are performed at each
step. The Fortran runtime provides the implementation of the array intrinsics.
Most of the transformations described in this work are performed at the fir
level and execution is supported by our OpenMP-enabled Fortran runtime, both
of which are highlighted in the figure.

4 Note that these are not the only dialects in use, however, they are the ones that
characterize the compilation stage and its associated optimizations.

Automatic Parallelization and OpenMP Offloading of Fortran 5

hlfir represents the array notation computation and array intrinsics in a way
that allows high-level simplifications, for example merging multiple elemental
computations, or simplifying sequences of intrinsics. fir is a lower level dialect
that directly represents the computation while still preserving higher-level notions
than traditional IRs such as loops and if statements and Fortran semantics for
pointers and operations. This is Finally lowered to LLVM IR, where a standard
optimization pipeline is run.

Fortran array intrinsics such as matmul and transpose are implemented as
calls to a runtime library provided by Flang.

Flang’s MLIR representation allows OpenMP constructs to be represented
hierarchically. This hierarchical and gradual-lowering pipeline allows us to imple-
ment the necessary transformations for performant offloading.

3 Related Work

Automatic GPU offloading has been explored in many applications and program-
ming languages. For example, it is a standard feature in many machine learning
frameworks in high-level languages. However, these still require the programmer
to adopt the framework’s programming style and APIs.[5, 6] All arrays to be
operated on also need to be converted to the types provided by the frameworks.
This is also the case with NVIDIA’s thrust [7], which provides high level C++
types to operate on arrays.

In C/C++ and Fortran, which are the most common languages for high
performance scientific computing, accelerated libraries for similar patterns of
computations that workdistribute allows exist [8, 9, 10], however, they still
require the programmer to make extensive changes to their code.

High Performance Fortran, or HPF [11], is a Fortran extension that emerged in
the 90’s which supports automatic parallization and distributing of computation
with annotations to native syntax. However, while it was met with enthusiasm,
it failed to achieve success and wide adoption. One of the reasons for this was
immature compiler technology and slow development speed at the time [12].
Conversely, recently, auto-parallelization and offloading of Fortran code was
implemented for stencil style computation in Flang [13], showing the potential of
the flexible intermediate representation.

Similarly to HPF, workdistribute allows the programmer to use the existing
language syntax and only annotate what part of the code they want accelerated.
In addition, because it is a part of the OpenMP standard, it allows easy integra-
tion into existing OpenMP code and/or extending the code with more generic
computation than what workdistribute allows.

4 Automatic Parallelization and Offloading

In this section, we will present our approach and outline how owing to the
structured high level representation employed by Flang, we are able to produce

6 Ivan R. Ivanov et al.

a high performance implementation advantageous in comparison to traditional
compilation approaches found elsewhere, for example, in clang.

4.1 Shortcomings of a Trivial Implementation

In order to preserve the Fortran semantics (Section 2.1), a trivial implementation
would perform the following for each statement:

– Allocate temporary arrays for each expression in the RHS
– Execute a separate kernel for each expression in the RHS
– Copy the result of the RHS to the LHS.
– Deallocate the temporary arrays

Room for improvement exists w.r.t. unnecessary memory movement and
allocations, cross-kernel simplifications (e.g. fusion), and using high-performance,
vendor-provided libraries (e.g. cublas or rocblas for GPUs).

4.2 Overview of Our Approach

The statements that can be included in a workdistribute region (ref. Sec-
tion 2.2) are be modelled by hlfir and optimizations on the hlfir level have
an opportunity to greatly impact the performance of the resulting code. Thus,
we would like to perform the division into units of work described above only
after we have performed high-level optimizations in hlfir.

We achieve this by preserving the high-level structure of the workdistribute
block and deferring materializing the separate kernels until a later stage. More
specifically, we perform handling of the workdistribute directive at the fir
stage of the Flang pipeline, see Section 2.4 and Fig. 3 for details.

4.3 MLIR workdistribute Operation

In order to make use of the hlfir optimizations, we need to preserve the
information about what part of the program comes from the workdistribute
directive through the hlfir pipeline. We know that workdistribute is comprised
of a single Fortran block which contains no control flow (ref. Section 2.2). We
introduce a new workdistribute MLIR operation which is a container for a
single MLIR block. This block does not allow code to move outside it and allows
us to precisely encapsulate the extent of our workdistribute.

We adapt the existing frontend code generation to emit the contents of the
workdistribute Fortran construct in this operation. The MLIR we get at the
beginning of the Flang MLIR pipeline is sketched in Fig. 4a.

Then, we reuse the existing high-level optimizations to optimize the contents
of the workdistribute and then bufferize hlfir. This will already give us many
of the optimizations that we want (e.g., buffer elimination, kernel merging). This
leaves us in the state shown in Fig. 4b.

Automatic Parallelization and OpenMP Offloading of Fortran 7

omp.target {
omp.teams {

omp.workdistribute {
%a = hlfir.elemental {...}
%b = hlfir.matmul %a ...
hlfir.assign %b %c
%d = hlfir.elemental {...}
hlfir.assign %e %d

}
}

}
(a) The omp and hlfir dialects emitted
by the frontend capture the high-level
semantics and structure.

target {
teams {

workdistribute {
fir.do_loop ... unordered {...
}
fir.allocmem ...
call RT_Matmul(...)
fir.do_loop ... unordered {
}
call RT_Assign(...)
fir.freemem ...

}
}

}
(b) Lowering to fir materializes loops
and allocations, and adds runtime calls.

target {
teams { workdistribute {

fir.do_loop ... unordered {...
}

}}
teams { workdistribute {

fir.allocmem ...
call RT_Matmul(...)

}}
teams { workdistribute {

fir.do_loop ... unordered {...
}

}}
teams { workdistribute {

call RT_Assign(...)
fir.freemem ...

}}
}
(c) We fission the teams(wd) nests to
outline separate parallel regions.

target {
teams { distribute {

parallel { wsloop {...} }
}}
fir.allocmem ...
call RT_Matmul(...)
teams { distribute {

parallel { wsloop {...} }
}}
call RT_Assign(...)
fir.freemem ...

}}
(d) We convert each teams(wd) nest to
its corresponding OpenMP construct.

target_data {
target { teams { distribute {

parallel { wsloop {...} }
}}}
fir.allocmem ...
call RT_OMP_Matmul(...)
target { teams { distribute {

parallel { wsloop {...} }
}}}
call RT_OMP_Assign(...)
fir.freemem ...

}
(e) The target operation is fissioned to
allow for host code execution and gets
wrapped in a target_data to preserve
the overall memory movement. Note
that code in the target_data is exe-
cuted on the host. The Fortran runtime
calls get replaced with OpenMP enabled
versions called from the host.

Fig. 4: Our transformation pipeline takes as an input a omp.workdistribute
nested in omp.teams and optionally omp.target, and represents it in terms of
concrete parallel OpenMP operations. We omit dialect names (e.g. omp) and
shorten workdistribute to wd for brevity.

8 Ivan R. Ivanov et al.

4.4 Lowering workdistribute to existing OpenMP Constructs

To lower the single-block workdistribute operation to concrete parallel
OpenMP constructs we chunk the computation into appropriate kernels. Because
we want to be able to replace intrinsic calls such as matmul and temporary
memory allocations with appropriate runtime calls from the host, we need to
split the target region and execute host code in-between. Splitting the target
kernels is also required to synchronize across teams.

Then, we fission workdistribute into what will eventually become different
target regions (i.e. kernels) or will turn into host-side runtime calls (Fig. 4c).

Now, we need to transform the teams{workdistribute{...}} nests. A
workdistribute loop nest can be converted to a distribute parallel do
nest, whereas a workdistribute{<intrinsic>} nest becomes just <intrinsic>
(as the sharing of work happens inside the intrinsic) (Fig. 4d).

This is semantically sound, as it describes the computation that needs to hap-
pen on the target, however, it is invalid OpenMP as teams must be strictly nested
in target. It also cannot be directly lowered as we do not have implementations
of the intrinsics we can use on the device.

Thus, we need to fission the target region around our teams and transfer the
rest of the computation to the host, where we can call our intrinsic functions,
which will in turn perform the computation on the target device. The result of this
transformation is shown in Fig. 4e. With this, we have successfully converted a
workdistribute statement to existing OpenMP constructs which can be lowered
to LLVMIR.

4.5 Enabling hlfir Optimizations: Alias Analysis

As we discussed in Section 2.2 and Section 4.1, implementing workdistribute
naively results in excessive allocation of intermediate expressions and memory
copying. This is especially problematic in the context of workdistribute as we
are operating on entire arrays. In order to minimize the required intermediates,
alias analysis is required to proof the correctness of omitting them. In our case,
however, temporaries may be allocated on the target, while other arrays may be
passed into the target kernel from the host. Thus, we need to be able to reason
about arrays that cross the host-target boundary.

We extend Flang’s alias analysis to follow memory references across host-
target boundaries. This allows the existing Flang hlfir lowering pipeline to
avoid unnecessary temporary allocations (see Section 2.1).

4.6 OpenMP-Enabled Fortran Runtime

Fortran array intrinsics such as matmul and transpose are implemented as
runtime calls to a library provided by Flang (shown in Fig. 3). We provide
OpenMP enabled versions of the runtime functions that take as arguments arrays
that are already on the target.

Automatic Parallelization and OpenMP Offloading of Fortran 9

For intrinsics that have high performance implementations by the vendor,
such as matmul which is provided by cublas and rocblas on NVIDIA and AMD
GPUs, we internally defer to them. This way, we abstract the low-level detail
and boilerplate associated with using them directly and enable programmers to
use the native language.

4.7 Memory Movement

Memory movement for OpenMP target offloading in Fortran can be automatically
generated as the array types contain information about their bounds. This is
in contrast with C/C++ where the sizes of the arrays must be specified by
the programmer. When the automatically generated memory movement is not
performant enough, it can be further optimized using the standard OpenMP
memory movement utilities by the programmer due to workdistribute being
part of the OpenMP infrastructure

5 Evaluation and Discussion

We conduct the evaluation of our approach using two experiments. Firstly, in Sec-
tion 5.2, we compare array notation workdistribute against OpenMP offloading
code that uses loops to express array operations to make sure our approach is up
to par with idiomatic OpenMP and can benefit from vendor accelerated libraries.
Secondly, in Section 5.3, we evaluate how our approach compares against the
straight-forward, trivial implementation discussed in Section 4.1.

5.1 Experiment Setup and Benchmarks

Setup We use a dual-socket system with 8-core 16-thread Xeon Silver 4215 CPUs
and an AMD MI210 GPU. We run all benchmarks a total of 3 times, each with
an additional single warm up iteration and take the mean runtime. For GPU
evaluations we measure the memory movement time between host and device,
and computation time and report both separately.

Benchmarks For our proof-of-concept, we focus on two benchmarks shown in
Fig. 5a and Fig. 5b. The first one is the axpy linear algebra operation which is a
scaled vector addition, and the second one is a matrix multiplication. These are
memory and compute bound, respectively.

5.2 Comparison to Loop-Based OpenMP code

For each benchmark, we compare the array notation implementation on a single
CPU core (labeled: cpu) and a simple straight-forward loop-based OpenMP of-
floading implementation (omp-traditional) against an implementation utilizing
workdistribute (omp-workdistribute). Note how the required programmer ef-
fort for the workdistribute implementation is very low, involving just wrapping
the array notation block in OpenMP directives. Our results are shown in Fig. 6.

10 Ivan R. Ivanov et al.

integer :: n
real :: a
real, dimension(n, n) :: x, y, z

z = a * x + y
cpu

!$omp target teams distribute \
! parallel do collapse(2)
do i = 1, n

do j = 1, n
z = a * x(j, i) + y(i, j)

enddo
enddo

omp-traditional

!$omp target teams workdistribute
z = a * x + y

!$omp end target teams workdistribute
omp-workdistribute

(a) AXPY (n = 4× 108)

integer :: n
real, dimension(n, n) :: x, y, z

z = matmul(x, y)
cpu

!$omp target teams distribute \
! parallel do collapse(2)
do i = 1, n

do j = 1, n
z(j, i) = 0
do k = 1, n

z(j, i) = z(j, i) +
x(j, k) * y(k, i)

enddo
enddo

enddo
omp-traditional

!$omp target teams workdistribute
z = matmul(x, y)

!$omp end target teams workdistribute
omp-workdistribute

(b) Matrix multiplication (n = 4096)

Fig. 5: We use three implementations of two common BLAS routines, AXPY
and Matrix multiplication, to evaluate our approach. An array notation im-
plementation which runs on a single core of the cpu for reference (cpu), a
trivial implementation using traditional OpenMP offloading constructs (omp-
traditional), and the simple array notation version, wrapped in workdistribute
(omp-workdistribute). Note how workdistribute allows the programmer to
avoid the verbosity of loop-based OpenMP code.

all computation memory

matmul cpu 61.6 61.6 0.00
omp-traditional 0.440 0.312 0.128
omp-workdistribute 0.131 0.00352 0.128

axpy cpu 0.811 0.811 0.00
omp-traditional 3.25 0.0110 3.24
omp-workdistribute 3.25 0.0108 3.24

Fig. 6: We (omp-workdistribute) achieve superior or comparable performance
compared to traditional OpenMP loop-based implementation (omp-traditional)
on two common linear algebra operations (Fig. 5). The automatically parallelized
and offloaded array-notation code (omp-workdistribute) is overwhelmingly
more performant than the original array notation code executed on a CPU (cpu).

Automatic Parallelization and OpenMP Offloading of Fortran 11

Trivial impl. Our approach
0.000

0.005

0.010

0.015

0.020

0.025

0.030

Ti
m

e
(s

ec
on

ds
)

0.025 s0.025 s 0.011 s0.011 s

2.31x
speedup

axpy omp-workdistribute
Computation

(a) axpy (n = 4× 108)

Trivial impl. Our approach
0.000

0.001

0.002

0.003

0.004

Ti
m

e
(s

ec
on

ds
)

0.0039 s0.0039 s 0.0036 s0.0036 s

1.09x
speedup

matmul omp-workdistribute
Computation

(b) Matrix multiplication (n = 4096)

Fig. 7: A trivial implementation that needs to allocate temporary arrays for each
expression and assignment (see Section 4.1) performs significantly worse than our
approach which enables high-level optimizations. See Fig. 5 for the benchmarks.

We can see how the computation portion of the benchmark is on-par with
the traditional OpenMP code in the axpy case, because the generated code is
essentially the same since we are able to omit all of the redundant allocations and
fuse the separate kernels. On the other hand, in the matrix multiplication case,
we are able to use vendor libraries (here rocblas to target our AMD GPU) which
boosts the performance by close to 8× while making it easier to write. Using
vendor-provided linear algebra routines is cumbersome, verbose, and non-portable.
On the other hand, using workdistribute hides the implementation details and
uses abstractions available in the base language.

We can observe that on memory bound applications (e.g. axpy), straight-
forward usage of workdistribute will not improve performance due to the
overwhelming overhead of the memory movement between the host and the
device. However, as we discussed in Section 4.7, this can be further optimized
using the existing OpenMP infrastructure and the arrays can be kept on the
device across multiple target regions if the applications allows it. On the other
hand, as we can see from the matrix multiplication results, for compute-heavy
tasks that accelerators excel at, even the straight-forward unoptimized host-device
memory movement can improve performance at close to no programmer effort.

5.3 Comparison to a Trivial Implementation

In order to evaluate the benefits of our approach, we disable the optimizations
related to removal of temporary allocations (see Section 2.1 and Section 4.5),
which results in generated code resembling that of a trivial implementation
discussed in Section 4.1.

12 Ivan R. Ivanov et al.

We plot the results in Fig. 7. We can see how eliminating unnecessary tempo-
rary memory allocations is especially important in memory-bound computation,
cf. Fig. 7a, where we achieve a 2.3× speedup over the trivial implementation. This
stems from the code in Fig. 5, i.e., we need to allocate one temporary array tmp1
for the result of a * x which we compute in one kernel, then we need another
temporary allocation for tmp1 + y which we compute in another kernel, and
finally a assignment to z which is a redundant memory copy. Using our approach,
this gets reduced to a single kernel which computes a * x(i,j) + y(i,j) and
stores the result directly in z(i,j).

For the matrix multiplication benchmark (cf. Fig. 7b), the trivial implementa-
tion still uses the vendor libraries. The relatively small speedup we get is because
we eliminate the redundant allocation for the RHS and assignment to LHS and
instead store directly into it.

6 Conclusion

We presented a proof-of-concept implementation of the workdistribute OpenMP
construct which provides an easy way to automatically parallelize and offload
Fortran array notation. Our approach is implemented on top of LLVM’s new
Fortran compiler – Flang.5 By employing a progressive abstraction lowering
strategy enabled by the MLIR intermediate representation Flang uses, we are able
to perform high-level optimizations to ensure high-performance code generation.
This allows us to achieve over 2× speedup on a benchmark compared to code
generated by a trivial implementation.

Hiding the parallelization details also allows us to use high-performance
vendor libraries to accelerate array operations without programmers needing to
manually call into cumbersome APIs.

This work can enable easy GPU offloading for existing Fortran codebases and
improve utilization of modern HPC systems.

Acknowledgements

This work was supported by JST SPRING, Grant Number JPMJSP2106 and
the RIKEN Junior Research Associate Program.

References

[1] TOP500. June 2024. url: https://www.top500.org/lists/top500/
2024/06/ (visited on 06/21/2024).

[2] OpenMP Architecture Review Board. OpenMP ARB Releases Technical
Report 12. url: https://www.openmp.org/press-release/openmp-arb-
releases-technical-report-12/ (visited on 01/25/2024).

5 The source is made available at https://github.com/ivanradanov/llvm-project/
tree/flang_workdistribute_iwomp_2024.

Automatic Parallelization and OpenMP Offloading of Fortran 13

[3] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,
Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and
Oleksandr Zinenko. “MLIR: Scaling Compiler Infrastructure for Domain
Specific Computation”. In: 2021 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO). 2021, pp. 2–14. doi: 10.1109/
CGO51591.2021.9370308.

[4] LLVM. The Flang Compiler. url: https://flang.llvm.org/docs/
(visited on 06/20/2026).

[5] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. “Pytorch: An imperative style, high-performance deep learning
library”. In: Advances in neural information processing systems 32 (2019).

[6] Roy Frostig, Matthew James Johnson, and Chris Leary. “Compiling machine
learning programs via high-level tracing”. In: Systems for Machine Learning
4.9 (2018).

[7] Nathan Bell and Jared Hoberock. “Thrust: A productivity-oriented library
for CUDA”. In: GPU computing gems Jade edition. Elsevier, 2012, pp. 359–
371.

[8] L Susan Blackford, Antoine Petitet, Roldan Pozo, Karin Remington, R
Clint Whaley, James Demmel, Jack Dongarra, Iain Duff, Sven Hammarling,
Greg Henry, et al. “An updated set of basic linear algebra subprograms
(BLAS)”. In: ACM Transactions on Mathematical Software 28.2 (2002),
pp. 135–151.

[9] NI V’yukova, VA Galatenko, and SV Samborskii. “Support for parallel
and concurrent programming in C++”. In: Programming and Computer
Software 44 (2018), pp. 35–42.

[10] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris,
Frédo Durand, and Saman Amarasinghe. “Halide: a language and compiler
for optimizing parallelism, locality, and recomputation in image processing
pipelines”. In: Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI ’13. Seattle,
Washington, USA: Association for Computing Machinery, 2013, pp. 519–
530. isbn: 9781450320146. doi: 10.1145/2491956.2462176. url: https:
//doi.org/10.1145/2491956.2462176.

[11] Harvey Richardson. “High Performance Fortran: history, overview and
current developments”. In: Thinking Machines Corporation 14 (1996), p. 17.

[12] Ken Kennedy, Charles Koelbel, and Hans Zima. “The rise and fall of High
Performance Fortran: an historical object lesson”. In: Proceedings of the
Third ACM SIGPLAN Conference on History of Programming Languages.
HOPL III. San Diego, California: Association for Computing Machinery,
2007, 7–1–7–22. isbn: 9781595937667. doi: 10.1145/1238844.1238851.
url: https://doi.org/10.1145/1238844.1238851.

[13] Nick Brown, Maurice Jamieson, Anton Lydike, Emilien Bauer, and Tobias
Grosser. “Fortran performance optimisation and auto-parallelisation by
leveraging MLIR-based domain specific abstractions in Flang”. In: Pro-

14 Ivan R. Ivanov et al.

ceedings of the SC ’23 Workshops of The International Conference on
High Performance Computing, Network, Storage, and Analysis. SC-W ’23.
, Denver, CO, USA, Association for Computing Machinery, 2023, pp. 904–
913. isbn: 9798400707858. doi: 10.1145/3624062.3624167. url: https:
//doi.org/10.1145/3624062.3624167.

